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Abstract 

We discuss a number of questions related to the role of the observer in classical and 
quantum theories of fields, in particular electrodynamics. We find the gauge-independent 
parts of the electromagnetic potential, which are classical observables, both in a non- 
covariant manner and in a Lorentz covariant, observer-dependent way. We present an 
analysis of the probabilistic interpretation of relativistic quantum mechanics, similar to 
that of the nortrelativistic theory, and discuss the gauge invariance of the corresponding 
probability amplitudes. 

1. Introduction 

The requirements of  gauge invariance and Lorentz covariance have 
shaped much of the formulations of the interactions between charged 
particles and the electromagnetic field, be it in the context of relativistic 
classical mechanics, classical electrodynamics, relativistic quantum 
mechanics or quantum theory of  fields. The elegant four-dimensional 
notation of  Minkowski space is very useful when we want to establish the 
Lorentz covariance of an equation, but it does hide the special role that the 
observer plays even in classical theories. 

It is natural that some timelike direction has to be singled out when we 
want to describe the dynamical development of a system, and the perfor- 
mance of measurements on this system is often carried out on a hyperplane 
normal to this direction. We have been compelled to an explicit use of  this 
notion of  an observer, whose world line defines this timelike direction, in 
our studies of quantum field theory and relativistic quantum mechanics. 
The consideration of position and orbital angular momentum operators in 
the quantum theory of relativistic free fields (Marx, 1968) leads to particular 
choices of probability amplitudes in terms of the field variables, and these 
same amplitudes have a basic role in the formulation of  a canonical 
quantization of free boson fields in terms of  wave functionals (Marx, 
t969a). In particular, when potentials are used as the basic field variables 
for the electromagnetic field, both a canonical quantization procedure 
(Katz, 1965; Marx, 1969a) and the special formulation developed for 
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theories with constraints (Goldbcrg, 1958, 1965; Goldberg & Marx, 1968) 
result in the separation of a gauge-independent part, which turns out to be 
observer dependent. We present a detailed discussion of this point in 
Sections 2 and 4. 

Even in classical field theories, which are usually presented in a manifestly 
Lorentz covariant form, we implicitly single out an observer when we 
specify boundary conditions on an initial hyperplane. Similarly, we find it 
necessary to refer to an observer when we use these classical fields as wave 
functions in a relativistic quantum mechanics, to which we have extended 
the usual probabilistic interpretation of the nonrelativistic theory. These 
roles of the observer are further elucidated in Section 3. Other theories, 
such as those described by the hyperplane formalism (Fleming, 1965, 1966), 
introduce the notion of a physically significant observer (or the hyperplanes 
perpendicular to its world line) at an earlier stage of the development of 
the theory. Some further aspects related to the gauge invariance of relativis- 
tic probability densities are presented in Section 5. 

We use natural units and a time-favoring metric in space-time. The 
modified summation convention applies to repeated lower Greek indices 
that range from 0 to 3. Other notation is either standard or used in previous 
papers. 

2. The Gauge-Independent Part of the Electromagnetic Potentials 

Maxwell's equations for the electric field E and the magnetic field B in 
free space can be written covariantly in the form 

F.~.~ = L  (2.1) 

%.apF.~, a = 0 (2.2) 

where %.a0 is the completely antisymmetric Levi-Civita tensor. We conclude 
from equations (2.2) that the antisymmetric field tensor F~. can be derived 
from a vector potential A~ through 

F . .  = A. , .  - A. , .  (2.3) 

Conversely, when Fu. is given by equation (2.3), equations (2.2) are iden- 
tically satisfied. It is usually assumed that only the fields have physical 
significance, and not the potentials, which are not uniquely defined by 
equation (2.3). The Fu. are invariant under the gauge transformation 

A~ -+ X# = A u + A . (2.4) 

where A is an arbitrary function ofx. It is then demanded that all physically 
significant results be invariant under an arbitrary gauge transformation. 
This is obviously the case when theories are formulated directly in terms 
of the fields Fu~ but it is often convenient to use the potentials A~, especially 
in the classical and quantum theories of fields in their Lagrangian or Hamil- 
tonian formulations. Nevertheless, it is possible to use the fields as basic 
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variables even in cases where potentials are normally used (Marx, 1967, 
1969a). 

When we use potentials as the basic coordinates in field theory, the 
separation of the physically meaningful, gauge-independent part is of 
great help in understanding many of the results. In order to do this, we 
decompose the vector potential into its solenoidal and irrotational parts. 

An arbitrary vector field v(x) whose magnitude vanishes at infinity 
sufficiently rapidly can be written as1";~ 

where 

which satisfy 

v=v~+vs  

f 1 [x-x'l-lV'.v(x')d3x' vl(x) = - v  

f 1 [x_x,[_IV , v(x,)d3x , v~(x) = V  ^ U~ A 

(2.5) 

(2.6) 

(2.7) 

V . v i  = V . v ,  V A v1 = 0 (2.8) 

V.vs= 0, V A v s = V A v  (2.9) 

We assume that A and j vanish sufficiently rapidly at infinity to use 
equations (2.6) and (2.7), for a fixed value of t. Although it is reasonable 
to assume that a physical system is localized, this restriction does not have 
to apply to unphysical fields such as the potentials. Nevertheless, we still 
impose it on the A~, so that their Fourier transforms are well defined and 
surface terms at spatial infinity vanish in integrations by parts. This 
amounts to a limitation in our choice of gauges, and gauge transformations 
should be limited to those in which A vanishes at spatial infinity sufficiently 
rapidly too. 

We express equations (2.1) in terms of these potentials, and obtain 

a2As =Js (2.10) 

a2A.r + V ( A  0 + V . A , )  = j ,  (2.11) 

-V 2 A0 - V. A~ = p (2.12) 

Any irrotational vector can be expressed as the gradient of a scalar; in 
particular 

A~ = -V~ (2.13) 
where 

~(x, ,) = ~ f [ x -  x'l-iV'.A(x',t)d3x ' (2.14) 

~" Rohrlich, F. (1965). Classical Charged Particles, p. 69. Addison-Wesley Publishing 
Company, Inc., Reading, Mass. We note that we write a 2 for 0 u 0u, and not for (nu Ou)2 
as in this reference. 

:~ The decomposition can be written in slightly different forms, which in turn determine 
how fast the field has to go to zero at infinity. See also Sommerfeld, A. (1950). Mechanics 
o f  Deformable Bodies, Section 20. Academic Press, New York. 
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We now define 
x(x) = A 0 ( x )  - ( 2 . 1 5 )  

and substitution of equation (2.13) into equation (2.12) shows that X 
satisfies 

V2X = - p  (2.16) 

The solution of this equation is 

1 f ix - x,l_lp(x,,t)d3x, (2.17) x ( x ,  t)  = 

Only the irrotational part of the current density is related to the charge 
density by conservation of charge, which implies that 

V.j  = V.jI --- -/5 (2.18) 

We can use this equation together with equation (2.13) to show that 
equation (2.11) is also satisfied by the solution (2.17) for X, while equation 
(2.10) for As is unrelated to the other two. 

We obtain the gauge transformation for ~ from equation (2.13) or 
equation (2.14), which is 

~ - + ~ = ~ : + A  (2.19) 

Hence, equation (2.15) shows that X is gauge invariant, which can also be 
concluded from equation (2.17). We have thus found that X and As are the 
gauge-independent parts of the potentials, while A~ and Ao are changed by 
the transformations. In particular, equation (2.19) shows that we can 
always find a gauge in which ~ and, consequently, At vanish, so that A 
and A0 are equal to As and X, respectively. This makes the Coulomb or 
radiation gauge a convenient choice in many cases, and explains why 
calculations carried out in this gauge have essentially the same form as 
those in gauge-independent formulations. 

When the source of the electromagnetic field is a charged field ~b, it 
transforms by 

~b -+ ~ = ~bexp (ieA) (2.20) 

and equation (2.19) shows that the fields 

~b' = ~b exp (-ie~) (2.21) 

are gauge independent. This is the change of variables used by Dirac (1950) 
and Goldberg (1965). The somewhat puzzling restriction (I. Goldberg, 
private communication) that excludes gauge transformations with A of 
the form 

A(x, t) = ),(t) (2.22) 

in these formulations is traced back to the requirement that A(x) vanish 
at spatial infinity. The classical observables (Goldberg, 1965) for the 
electromagnetic fields are the two independent components of As, while X 
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is expressed in terms of the charged fields through equation (2.17). The 
gauge-independent quantization procedure then follows in a manner 
similar to the one carried out in a Coulomb gauge (Bjorken & Drell, 1965). 

3. Observer  D e p e n d e n c e  a n d  L o r e n t z  Covar iance  

Soon after Einstein's initial formulation of the principles of special 
relativity, it was realized that relativistic theories of particles or fields 
could be advantageously formulated in terms of scalars, vectors and tensors 
in Minkowski's four-dimensional space-time. This way, covariance under 
Lorentz transformations]" is manifest. Nevertheless, the dynamical develop- 
ment of a system has to be described in terms of an observer, who per- 
forms the experiment and records the results. We consider only inertial 
observers, who are in rectilinear uniform motion with respect to each other 
and are represented by a straight timelike world line. We specify the state 
of motion of the observer by means of a four-vector n, which satisfies 

n z = 1, no > 0 (3.1) 

The solution of a dynamical problem for a system of N point particles 
is completed when we determine their world lines. They are usually described 
by their parametric equations, and the choice of the parameters is quite 
arbitrary. It can be a set of Lorentz scalars, such as the N proper times 
~, defined by 

dA= z = ,~,~,.~) ~'~d'~(~), o~ = 1 ,2 ,  . .  ., N (3.2) 

or a common parameter for all particles, such as the coordinate time t, or 
the observer time r given by 

x (~). n = ~- (3.3) 

The equations of motion~ can be conveniently derived from a covariant 
Lagrangian (Rzewuski, 1964), from a noncovariant Lagrangian (which 
requires special care to insure Lorentz covariance), or they can be given 
directly, preferably in covariant form. It is generally less clear how initial 
conditions should be specified; the most convenient way is probably to 
give the position and velocity for each particle on a spacelike surface, at 
least when the interactions are retarded. When they are advanced as well 
as retarded, as in the Feynman-Wheeler electrodynamics (Wheeler & 
Feynman, 1945, 1949), it is more natural to give asymptotic conditions in 
the infinitely remote past and/or future. In any case, we have to specify 
only six independent data per particle, whether we are using a relativistic or 
a nonrelativistic theory. 

I In this discussion, we restrict ourselves to the consideration of proper orthochronous 
Lorentz transformations. 

5; Strictly speaking, the term 'equations of motion' should be applied only to the 3N 
equations for the x~e)(t), while the 4N equations for the x~)(A,) are not independent 
and do not give the 'motion' in space-time, but the world lines. All these formulations 
are, of course, equivalent. 



472 EGON MARX 

The above-mentioned Feynman-Wheeler electrodynamics is an attempt 
to formulate a relativistic action-at-a-distance theory, in which no fields 
are needed, or where they only play an auxiliary role. This is how electric 
and magnetic fields were introduced in the first place, to facilitate the 
computation of forces between charges at rest or in motion (currents). 
But when Maxwell's equations were finally discovered, it was found that 
these fields had degrees of freedom of their own, which manifest themselves 
in form of  electromagnetic waves or radiation. We feel (at this time) that it 
is convenient, and possibly necessary, to consider the electromagnetic and 
other fields as independent dynamical systems. 

We can obtain equations of  motion for a field from an action principle, 
using covariant Lagrangian densities, or we can start from the equations 
themselves.~ When the field is considered as a dynamical system, we seek 
to determine its values at all points in space at a given time (or on a given 
spacelike hypersurface) from the sources and boundary values at an initial 
time (or on a hypersurface) when the interactions are all retarded. If  we 
have other types of  interactions, we usually need initial and/or final con- 
ditions, On the other hand, if we are only interested in the values of the 
field in a bounded region of  space at a given time, the speed of  light limits~ 
the amount of information we need about the sources and initial values to 
those inside the backward light cones from the set of  observation points, 
for retarded interactions. 

The role of the observer is more significant when we consider the field 
as a dynamical system, since he defines what is meant by the simultaneous 
observations carried out over all of  space to determine the state of  the 
system. This is clearly a drastic idealization of a physical situation, both as 
far as the instantaneous measurement of  the field at a point and the 
coordination needed to do this throughout all space are concerned. In a 
classical field theory it is possible, of course, to assume that the field vanishes 
outside a bounded region at the initial time. 

It is not necessary to use a reference frame in Minkowski space that has 
its time axis parallel to the world line of the observer. When we represent 
the observer by the unit vector n, we assume that the hyperplanes on which 
the field is specified are perpendicular to n. These entities then have physical 
(geometrical) significance,�82 independent of  the coordinates we might 
choose. We distinguish between Lorentz covariant quantities that are 
independent of  the observer, such as xj, or x 2, and others that are observer 
dependent, such as the observer time x.n.  

We easily see that the specification of initial conditions on a hyperplane 
perpendicular to n restricts the choice of an observer (not of a reference 
frame), since a hyperplane perpendicular to n ' #  n always cuts the one 

? In certain cases, such as spinors (Case, 1957; Marx, 1970c), this turns out to be a 
nontrivial alternative. 

We do not allow for the existence of taehyons in this paper. 
�82 This implies that n transforms like any other four-vector. A different point of view 

is taken by Rohrlich (1965, p. 72 ft.). 
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perpendicular to n and necessarily includes earlier events, where the field 
is not determined by the observer n. In this sense, it is not possible to describe 
the same system by two different observers. This observer dependence of  
the initial values is also reflected in the so-called invariant functions, such as 

d (O(x) = -(2zr) -4 f d4k exp ( - ik .  x) (k 2 - m2) - 1 (3.4) 

where we have to specify the integration path in the complex ko-plane (this 
integration is assumed to be performed first) in order to obtain the different 
types of functions d(l). This implies a choice of time axis, and d(x), for 
instance, satisfies 

(a 2 § m2)A(x) = 0 (3.5) 

A(x, O) = 0 (3.6) 

00 A(x, 0) = -8(x)  (3.7) 

and from equation (3.6) we obtaint 

0i A(x, 0) = 0 (3.8) 

Equation (3.5) is covariant, but equations (3.3)-(3.5) are not. Their co- 
variant analogues are 

A 07, 0) = 0 (3.9) 

0u d()7, 0) = -n~ 8(3)(~ ") (3.10) 

where ~ is the covariant space part of the vector x, defined by 

.~ = x - x .nn (3.11) 

this indicates that A0~ , z) depends on n to some extent. 
We thus conclude that the observer plays a somewhat marginal, but by 

no means negligible, role in classical relativistic theories. On the other hand, 
the situation is quite different in quantum mechanics and quantum theory 
of fields, and consideration of the observer is basic for their physical 
interpretation. 

In nonrelativistic quantum mechanics, the space coordinates x~ are 
operators, while the time t is a parameter. If  we consider a simple system, 
such as a single particle, its state is represented by a unit vector (or a ray) 
in a Hilbert space, that of square-integrable functions of x, for instance, 
with the usual scalar product 

(f,  g) = f d3xf*(x)g(x) (3. 12) 

t We do not derive our results for these singular functions with mathematical rigor, 
but more in the formal sense customary in papers of this nature. We know that such 
manipulations can lead to contradictions such as those associated with Schwinger 
terms (Schwinger, 1959; Goldberg & Marx, 1967), which arise from ambiguities in the 
definition of products of such functions. 

31 
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I f  we formulate  a dynamical  problem in the Schr tdinger  picture, in which 
the physical interpretation is more  easily understood,  we have to specify 
the state vector at  the initial time and the potential at all later times, then 
the SchrOdinger equat ion o f  mot ion,  

i k V = / / ~  (3.13) 

allows us to find the state vector at  all later t imes.t  We can imagine the 
time development  o f  the system represented by a curve on the unit  sphere 
in this Hilbert  space, parametrized by t. 

Al though the subject o f  relativistic quan tum mechanics is no t  well 
developed, we have proposed a formulat ion that  interprets the Kle in-  
G o r d o n  equation for  bosons (Marx, 1969b) and a modified Dirac equation 
for  fermions (Marx, 1970b) in terms of  probabili ty amplitudes for  particles 
in an external electromagnetic field. This interpretation is pat terned closely 
after the generally accepted nonrelativistic one, and reduces to it in a natural  
way for  kinetic energies small compared  to the mass. 

We still work  in the Hilbert space of  functions o f  a three-vector variable,J~ 
but  in a relativistic theory we have to consider two vectors, both  o f  which 
vary with time, and which represent particle and antiparticle states. We 
can still write the equations o f  mot ion  in the form o f a  Schr td inger  equation 
(3.13), where W now has two or  four  components .  Our  probabilistic inter- 
pretat ion is based on the conservation o f  charge, and requires a somewhat  
unusual  specification o f  boundary  conditions. We consider a finite process, 
f rom time t~ to ts, and we either give the particle amplitude, normalized 
to 1, at the initial time t~ and set the antiparticle amplitude equal to 0 at the 
final time t s, or we specify the normalized antiparticle amplitude at t s and 
make  the particle amplitude vanish at t~. The equations o f  mot ion  then 
allow us to find both  amplitudes at  times t such that  

t~ ~< t ~< t s (3.14) 

These can be called causal boundary  conditions, and they arise f rom the 
use o f  the causal Green function or  Feynman  propagator .  In  particular, we 

i" It is important for our subsequent discussion to distingtfish clearly between the 
roles of the spatial coordinates x~ and the time t. Given a vector f in this Hilbert space, 
we can determine both x~f and 0~ f, which are different vectors, while tf is essentially 
(up to the norm) the same vector and 00 f cannot be determined at all, unless we are 
given a family of vectors as a function of the parameter t. We also have to distinguish 
between iOo and the Hamiltonian operator H, which is usually expressed in terms of 
x and V and can change in time (be explicitly time dependent). In particular, we often 
find reference in the literature on nonrelativistic quantum mechanics to an uncertainty 
relation between time and energy, which is at best a misnomer. It usually refers to an 
inequality satisfied by the product of the lifetime of an unstable state and the natural 
line width of the radiation emitted in its decay (Davydov, 1965). It might be possible to 
formulate quantum mechanics in the vector space of functions of four variables x,, 
where t and O/Ot are operators, but we see no reason to do this. On the contrary, since an 
inner product in this space would be unrelated to the physical interpretation of the theory. 

~: We also have to allow for the two spin states in the case of spin-�89 fermions, but this 
is a trivial complication. 
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determine this way the particle amplitude at tr and the antiparticle amplitude 
at h, and charge conservation implies that the norms of these vectors add 
up to 1, which makes the probabilistic interpretation possible.t 

It  is quite obvious that this formulation of relativistic quantum mechanics 
relies heavily on the separation of  space and time variables, which with 
little effort can be performed covariantly in terms of  the observer vector n, 
Thus, we conclude that, although an equation such as the Klein-Gordon 
equation might be relativisticalty covariant and independent of the observer, 
the specification of initial and final conditions and the physical interpreta- 
tion have to be carried out in terms of  an arbitrary but given observer. 
There also are a number of  operators, such as position and orbital angular 
momentum, that are explicitly observer dependent.+ + 

We also have extended the above theory to several identical particles 
(Marx, 1970a). It is basically a theory with a fixed number of particles, 
although it allows for pair creation and annihilation. We use the many-time 
formalism, with one time variable for each particle, but they still are used as 
parameters, and the general nature of  the interpretation remains unaltered. 
The space of state vectors is the Hilbert space of  functions of  several three- 
vector variables, or, to be more precise, there are several components in 
different subspaces with the right symmetry properties. 

We now consider the theory ofa  quantized field, where we again encounter 
this marked difference between space and time; this is most clearly seen in 
the Schrrdinger picture, although it is equally true in the Heisenberg 
picture. The classical system to be quantized is a field (or several fields) 
specified throughout space, that is, the basic generalized coordinate is 
itself a vector in the Hilbert space of  functions of  a three-vector variable. 
In a quantum theory, we no longer look for the coordinate as a function of 
time, but we deal with the time development of  a probability amplitude for 
all possible coordinates. In a field theory of  integer spin (bosons), we can 
represent this amplitude explicitly by wave functionals (Marx, 196%), 
which are vectors in another Hilbert space, where the inner product is 
defined with the help of  functional integration (Berezin, 1966; Rzewuski, 
1969), 

f F * [ f ]  G[f] 8f (3.15) ( r ,  G) 

t Charge conservation does not require that the norms of the vectors remain less 
than t at intermediate times. If they do, they can be interpreted as probability amplitudes, 
but if they do not, this would not be too difficult to 'explain'. It might correspond to 
the possibility of finding more than one particle at intermediate times, due to pair creation, 
although this would again lead as away from the one-particle theory which we have been 
seeking. A more reasonable assumption is to exclude observations at intermediate times, 
since it is well known that observations in quantum mechanics disturb the system, which 
is particularly undesirable in a problem when boundary conditions at the final time have 
to be specified. The whole problem of observation of antiparticles by observers formed 
by matter requires further elucidation. 

Although the discussion in an earlier work (Marx, 1968) was carried out for quantized 
fields, most of the results can be reinterpreted in terms of the classical fields of relativ- 
istic quantum mechanics. 
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Operators are defined in this space in terms of multiplication by the co- 
ordinate field and the corresponding functional derivative, and the time 
development of the system makes the wave functional time dependent. 
When it is given at the initial time, a functional differential Schr6dinger 
equation determines it at later times. Space and time coordinates appear in 
completely different ways, and it is difficult to see how to relate the descrip- 
tions of two different observers of a single system. It is frequently stated 
that it is simpler to discuss the Lorentz invariance of a quantum field theory 
in the Heisenberg picture, where the field operators depend both on space 
and time. Actually, the transformation from one picture to the other does 
not change the nature of the Hilbert space and operators, which still operate 
on functionals of functions of x; in the Heisenberg picture, the operators 
that represent physical quantities are different at different times. The role 
of the x, is that of continuous indices, and that of t, of a parameter; in 
particular, we often find it advantageous to go over to momentum space, 
and use functions ofk  instead of those ofx. The woofs of  Lorentz invariance 
found in the literature usually correspond closely to those for the classical 
field, especially when this is done in the language of canonical transforma- 
tions and Poisson brackets. 

The above discussion in terms of wave functionals is appropriate only 
for bosons, which require commutators of canonical coordinates and 
momenta. For fermion fields, we usually refer to no specific rewesentation 
of state vectors and operators, and use anticommutation relations for the 
latter; this way we do not obtain a simple physical interpretation in terms 
of a probability amplitude for the classical states of the field. We have 
suggested (Marx, 1970b) that it should be possible to treat fermions 
within the context of relativistic quantum mechanics, without going to 
a 'second' quantization. These would then interact via classical or quan- 
tized boson fields, which can also have dynamical degrees of freedom of 
their own, as discussed in Section 2 in connection with the electromagnetic 
field. 

Thus, the observer plays an important role in the description of relativistic 
processes, and space and time have to be carefully distinguished in order 
to obtain physical interpretations. What special relativity tells us is that 
this separation can be carried out in many ways, by choosing an arbitrary 
timelike direction in Minkowski space to represent the state of motion of 
the observer. 

We should still mention that theories in which only asymptotic states 
are considered, be it of particles or fields, are those that most easily can 
dispense with the notion of an observer. On the other hand, processes that 
take an infinite time and monochromatic plane waves are clearly very 
drastic idealizations, which might be responsible for some of the divergences 
that beset quantum field theories. This is the approach used in the so-called 
S-matrix theory, but it has not been shown that this is a consistent and 
complete dynamical theory. Furthermore, it explicifly excludes the possi- 
bility of matdng observations duritxg the time an interaction is present, 
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which is probably an unnecessary limitation. Other difficulties are related 
to unstable particles, excited states and bound states. 

4. Gauge Independence and Observer Dependence 

The separation of the vector potential A into irrotational and solenoidal 
parts is clearly not a Lorentz covariant procedure, but it can be made 
covariant through the introduction of the observer n. For instance, we find 

~') ---Of, f ~ [-(x - ~,)2]-,/2 ~'.~(#', ~-) d3#' (4.1) 

As,(5c, ~-) = %vao %=t~n~n= Oh ~ [ - ( ~ -  ~')2]-l/2 0'~ A~,(yc',.r) da.~ ' 

(4.2) 
which, together with the component of A along n, satisfy 

A = Ax + As + n. An (4.3) 

n.Ax = n.As = 0 (4.4) 

%,ao n~ Oa Aio = O, ~. As = 0 (4.5) 

The solenoidal part As was determined (Goldberg & Marx, 1968) to be the 
classical observable that is then quantized according to the procedure due 
tO Bergmann (Bergmann & Goldberg, 1955). The gauge-independent part 
related to the Coulomb interaction, 

X = n . A  O~ O~r (4.6) 

where ~ is the integral in equation (4.1), can be expressed in terms of the 
charged fields, or we can incorporate this interaction to the gauge-in- 
dependent fields defined by equation (2.21). 

it is obvious that, once we take into account the observer dependence of 
our equations explicitly through the vector n, the choice of a reference 
frame in Minkowski space is immaterial. On the other hand, there is no 
simple way to relate the gauge-independent parts of the potentials for 
different observers, since their determination is nonlocal; integrations such 
as those in equations (4.1) and (4.2) are carried out over different 
hyperplanes. 

Even Maxwell's equations (2.1) and (2.2), although written in tensor form 
independent of the observer, have to be separated into true equations of 
motion and constraints, and this separation is clearly dependent on the 
observer. If the initial values of the fields are given on a hyperplane per- 
pendicular to n, they have to satisfy the equations of constraint 

n~ ~ F~,~(~, "to) = n u j~(~, ~'0) (4.7) 

np%,ap~aF~,~.(~,'ro) = 0  (4.8) 
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which are the eovariant generalizations of 

V. E(x, to) = p(x, to) (4.9) 

V. B(x, to) = 0 (4.10) 

The true equations of motion and conservation of charge then insure that 
equations (4.7) and (4.8), or equations (4.9) and (4.10), are satisfied at 
later times. 

We can also separate E into solenoidal and irrotational parts (B is always 
solenoidal, of course), and Es is found (Goldberg, 1965) to be the momen- 
tum canonically conjugate to A when gauge-independent charged fields 
are used. We obtain similar results in the corresponding covariant, observer- 
dependent formulation (Goldberg & Marx, 1968). 

When we use equation (2.7) for A, we find that it expresses As in terms 
of B, 

A~(x, t) =4,~lv ^ f lx--x'l-lB(x',t)d3x ' (4.11) 

which indicates that the gauge-independent formulation can be carried out 
in terms of the electromagnetic field alone, and is nonlocal in space. 

The same difference in the roles of the different parts or components of 
the potential is in evidence when the free electromagnetic field is quantized 
in terms of wave functionals (Katz, 1965; Marx, 1969a). Again there is no 
relationship between the states of the quantized electromagnetic field as 
described by different observers. 

Once we realize the observer dependence of the dynamical part of the 
electromagnetic potential, as exemplified by equation (4.11), we no longer 
feel compelled to eliminate from consideration an observer-dependent 
interaction, such as the one we have proposed for the two-component 
spinor field (Marx, 1970c). In the case of an external electromagnetic field, 
our starting point is the Lagrangian density 

~ =  , , ~ B  m z (4.12) (D. X~) N~  D. XB - X] n~l~ Xs 
where 

The charge density in this theory is indefinite, not positive definite as is the 
one we obtain for the unquantized Dirac field; consequently, we can extend 
to this spin-�89 field our probabilistic interpretation of relativistic quantum 
mechanics (Marx, 1969b). 

5. Gauge Invarianee of Probability Amplitudes 

The usual approach to a relativistic quantum mechanics of free spin-0 
and spin-�89 particles starts from Lagrangian densities that lead to the Klein- 
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Gordon and Dirac equations respectively. Electromagnetic interactions are 
then introduced through the gauge-invariant substitutiont 

0~, ~ D~, = a~, • ieA~ (5.1) 

and the addition of the flee-field Lagrangian density for the electromagnetic 
field, 

~e.m. = --kF~,v Fuv (5.2) 

when the electromagnetic field is dynamical, rather than external. The 
gauge invariance of the theory is then a consequence of 

(0~ - ieA~)(Jj = (0~ - ieAu - ieA,~) [exp ( ied) ~bj] (5.3) 

= exp (ieA) (0~ - ieAu) ~bj 

where ~bj are the components of the charged field. 
For the charged scalar field, we define the probability amplitudes for 

particles and antiparticles by (Marx, 1969b) 

g(+~(x) = ( ~ f / 2 ~ ( x )  • i(2ff~)-l/2 Do(x)~(x)  (5.4) 

where E is the integral operator 

/~ = (-V 2 + m2) 1/2 (5.5) 

We have not replaced V z by D z, which would have introduced many new 
complications in this operator, and its counterpart in momentum space, 

k0 = (k 2 + m2) 1/2 (5.6) 

Consequently, the probability amplitudes (5.4) do not transform in a 
simple manner under gauge transformations, and the probability densities 
are not gauge invariant. 

There are at least two reasons why this is not a particularly serious 
problem. As we have pointed out, the quantities N(+)(t) and N(-)( t )  do 
not necessarily remain less than 1 at intermediate times, so that they might 
not correspond to probabilities, and probability densities do not have to 
be measurable at intermediate times. Hence, it is sufficient to assume that 
the fields are free at t~ and t ,  to avoid problems with gauge invariance. 
Alternatively, we can use the gauge-independent fields (2.21) throughout, 
together with the operator (Marx, 1970c) 

D~ = 0~, • teA~ (5.7) 
where 

A~(~7, T) = ~ d3:~, [_(:~ _ ff,)2]-1/2 ~ Fu~(~, ' T) (5.8) 

"~ The sign of the second term depends on one's choice of the charge of the particle, 
represented by the positive frequency part of the field. 
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is a gauge-independent, observer-dependent part of the potential. Then 

g'(+)(x) = 1/25b'(x ) 4- i(2/~) -1/2 Do(x ) ~'(x) (5.9) 

are gauge-invariant probability amplitudes. 
There is another important reason (Marx, 1970c) why we should use 

gauge-independent fields in conjunction with a dynamical electromagnetic 
field. This has to do with the equation of constraint (4.7) or (4.9), which has 
to be satisfied by the given values of the electromagnetic fieldt either at h 
or at t~. But the charged field is not specified completely at either time, so 
that we do not know the charge density and we cannot specify the electro- 
magnetic field consistently a priori. When we use gauge-independent fields, 
the static field is incorporated into the particle field; the equation of 
constraint for the solenoidal part of the electric field or the gauge-in- 
dependent part of the potential is homogeneous, and can be trivially 
satisfied. This whole procedure, of course, is observer dependent. 

In the case of a charged spin,�89 field, straightforward application of the 
same substitution does not lead to a consistent theory, since the charge 
density is positive definite. We then have to use a somewhat different theory, 
such as the ones proposed by Marx (1970b, 1970c); in either case, the defini- 
tion of the probability amplitudes in terms of the original field is not gauge 
invariant unless we use gauge-independent fields at the outset. 

The above formulations correspond closely to Feynman's propagator 
approach to quantum electrodynamics (Feynman, 1949; Bjorken & Drell, 
1964), although the details and the interpretation may differ.:~ 

The relativistic quantum mechanics of charged particles in an external 
electromagnetic field has the general form of the nonrelativistic theory; 
in particular, the Schr/3dinger equation is linear in the field. When we 
consider a dynamical electromagnetic field, the equations of motion are 
no longer linear, which makes the use of Green functions somewhat 
questionable. Nevertheless, the probability amplitudes are still in a Hilbert 
space, and the operators that correspond to the observables are linear 
operators. 

6. Concluding Remarks 
In the preceding sections, we have discussed a number of problems related 

to Lorentz covariance, gauge invariance and observer dependence. Rather 
than seeking new answers, we have concentrated on exploring the questions 
and pointing out the shortcomings of the usual treatments. 

t A real field, such as the electromagnetic field, has to satisfy either retarded or advanced 
boundary conditions. Causal boundary conditions would overspecify the field, since 
either the positive or the negative frequency part determine both the real field and its 
time derivative, which cannot be given at two different times. This is related to the fact 
that the causal Green function is complex, while the retarded and advanced ones are real. 

:~ For  instance, we emphasize a description of processes that take a finite time, and an 
extension to infinite times, to obtain a scattering matrix, might lead to mathematical 
problems. 
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We have identified X and As as the parts of  the electromagnetic potential 
Au that are independent of the gauge. We have found that X can be expressed 
in terms of the charge density p, and As in terms of the magnetic field B, 
which makes the usefulness of  the potential questionable in certain areas of  
physics, especially quantum field theory.'~ We have also pointed out the 
reason why the Coulomb gauge has definite advantages over the covariant 
Lorentz gauge in similar situations. 

We have emphasized the difference between a change of coordinates in 
space-time, or Lorentz transformation, and a change of observer. The 
usual assumption has the observer at rest in the Lorentz frame, which makes 
this distinction disappear; it is to a certain extent a matter of  taste whether 
one finds this distinction useful. On the other hand, the acceptance of the 
dependence of the preparation and outcome of experiments on the observer 
is of  physical significance. It  is quite possible that the consideration of fields 
as physical systems with an infinite number of degrees of  freedom, which 
extend over all space,:~ is an idealization of experimental situations that  
leads to unavoidable mathematical difficulties; in that case we would have 
to resort to a different description of a field, or to one of the action-at-a- 
distance theories. 

We conclude that the observer plays an important role, especially in 
quantum theory of fields and relativistic quantum mechanics. Manifest 
covariance independent of the observer has only a limited usefulness, and 
it quite possibly tends to obscure the physical differences between spacelike 
and timelike directions. 

The fact that observers and instruments also obey the laws of physics, 
and that they interfere with the system during a measurement, was a 
significant contribution to the understanding of quantum mechanics. We 
feel it is now necessary to clarify the role of the observer in relativistic 
theories of  particles and fields. 
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